An Improved Approach for Prediction of Parkinson's Disease using Machine Learning Techniques

Authors: Kamal Nayan Reddy Challa, Venkata Sasank Pagolu, Ganapati Panda, Babita Majhi

Conference Paper

Abstract: Parkinson's disease (PD) is one of the major public health problems in the world. It is a well-known fact that around one million people suffer from Parkinson's disease in the United States whereas the number of people suffering from Parkinson's disease worldwide is around 5 million. Thus, it is important to predict Parkinson's disease in early stages so that early plan for the necessary treatment can be made. People are mostly familiar with the motor symptoms of Parkinson's disease, however, an increasing amount of research is being done to predict the Parkinson's disease from non-motor symptoms that precede the motor ones. If an early and reliable prediction is possible then a patient can get a proper treatment at the right time. Nonmotor symptoms considered are Rapid Eye Movement (REM) sleep Behaviour Disorder (RBD) and olfactory loss. Developing machine learning models that can help us in predicting the disease can play a vital role in early prediction. In this paper, we extend a work which used the non-motor features such as RBD and olfactory loss. Along with this the extended work also uses important biomarkers. In this paper, we try to model this classifier using different machine learning models that have not been used before. We developed automated diagnostic models using Multilayer Perceptron, BayesNet, Random Forest and Boosted Logistic Regression. It has been observed that Boosted Logistic Regression provides the best performance with an impressive accuracy of 97.159 % and the area under the ROC curve was 98.9%. Thus, it is concluded that these models can be used for early prediction of Parkinson's disease.

Submitted to arXiv on 26 Oct. 2016

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.