DiSMEC - Distributed Sparse Machines for Extreme Multi-label Classification

Authors: Rohit Babbar, Bernhard Shoelkopf

Abstract: Extreme multi-label classification refers to supervised multi-label learning involving hundreds of thousands or even millions of labels. Datasets in extreme classification exhibit fit to power-law distribution, i.e. a large fraction of labels have very few positive instances in the data distribution. Most state-of-the-art approaches for extreme multi-label classification attempt to capture correlation among labels by embedding the label matrix to a low-dimensional linear sub-space. However, in the presence of power-law distributed extremely large and diverse label spaces, structural assumptions such as low rank can be easily violated. In this work, we present DiSMEC, which is a large-scale distributed framework for learning one-versus-rest linear classifiers coupled with explicit capacity control to control model size. Unlike most state-of-the-art methods, DiSMEC does not make any low rank assumptions on the label matrix. Using double layer of parallelization, DiSMEC can learn classifiers for datasets consisting hundreds of thousands labels within few hours. The explicit capacity control mechanism filters out spurious parameters which keep the model compact in size, without losing prediction accuracy. We conduct extensive empirical evaluation on publicly available real-world datasets consisting upto 670,000 labels. We compare DiSMEC with recent state-of-the-art approaches, including - SLEEC which is a leading approach for learning sparse local embeddings, and FastXML which is a tree-based approach optimizing ranking based loss function. On some of the datasets, DiSMEC can significantly boost prediction accuracies - 10% better compared to SLECC and 15% better compared to FastXML, in absolute terms.

Submitted to arXiv on 08 Sep. 2016

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.