Applying Deep Learning to Basketball Trajectories

Authors: Rajiv Shah, Rob Romijnders

KDD 2016, Large Scale Sports Analytic Workshop

Abstract: One of the emerging trends for sports analytics is the growing use of player and ball tracking data. A parallel development is deep learning predictive approaches that use vast quantities of data with less reliance on feature engineering. This paper applies recurrent neural networks in the form of sequence modeling to predict whether a three-point shot is successful. The models are capable of learning the trajectory of a basketball without any knowledge of physics. For comparison, a baseline static machine learning model with a full set of features, such as angle and velocity, in addition to the positional data is also tested. Using a dataset of over 20,000 three pointers from NBA SportVu data, the models based simply on sequential positional data outperform a static feature rich machine learning model in predicting whether a three-point shot is successful. This suggests deep learning models may offer an improvement to traditional feature based machine learning methods for tracking data.

Submitted to arXiv on 12 Aug. 2016

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.