Machine Learning for E-mail Spam Filtering: Review,Techniques and Trends

Authors: Alexy Bhowmick, Shyamanta M. Hazarika

Journal. 27 Pages

Abstract: We present a comprehensive review of the most effective content-based e-mail spam filtering techniques. We focus primarily on Machine Learning-based spam filters and their variants, and report on a broad review ranging from surveying the relevant ideas, efforts, effectiveness, and the current progress. The initial exposition of the background examines the basics of e-mail spam filtering, the evolving nature of spam, spammers playing cat-and-mouse with e-mail service providers (ESPs), and the Machine Learning front in fighting spam. We conclude by measuring the impact of Machine Learning-based filters and explore the promising offshoots of latest developments.

Submitted to arXiv on 03 Jun. 2016

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.