Percolation of random nodal lines

Authors: Vincent Beffara (IF), Damien Gayet (IF)

Abstract: We prove a Russo-Seymour-Welsch percolation theorem for nodal domains and nodal lines associated to a natural infinite dimensional space of real analytic functions on the real plane. More precisely, let $U$ be a smooth connected bounded open set in $\mathbb R^2$ and $\gamma, \gamma'$ two disjoint arcs of positive length in the boundary of $U$. We prove that there exists a positive constant $c$, such that for any positive scale $s$, with probability at least $c$ there exists a connected component of $\{x\in \bar U, \, f(sx) \textgreater{} 0\} $ intersecting both $\gamma$ and $\gamma'$, where $f$ is a random analytic function in the Wiener space associated to the real Bargmann-Fock space. For $s$ large enough, the same conclusion holds for the zero set $\{x\in \bar U, \, f(sx) = 0\} $. As an important intermediate result, we prove that sign percolation for a general stationary Gaussian field can be made equivalent to a correlated percolation model on a lattice.

Submitted to arXiv on 27 May. 2016

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.