Evolving Shepherding Behavior with Genetic Programming Algorithms
Authors: Joshua Brulé, Kevin Engel, Nick Fung, Isaac Julien
Abstract: We apply genetic programming techniques to the `shepherding' problem, in which a group of one type of animal (sheep dogs) attempts to control the movements of a second group of animals (sheep) obeying flocking behavior. Our genetic programming algorithm evolves an expression tree that governs the movements of each dog. The operands of the tree are hand-selected features of the simulation environment that may allow the dogs to herd the sheep effectively. The algorithm uses tournament-style selection, crossover reproduction, and a point mutation. We find that the evolved solutions generalize well and outperform a (naive) human-designed algorithm.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.