Fairness Constraints: A Mechanism for Fair Classification

Authors: Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, Krishna P. Gummadi

Abstract: Automated data-driven decision systems are ubiquitous across a wide variety of online services, from online social networking and e-commerce to e-government. These systems rely on complex learning methods and vast amounts of data to optimize the service functionality, satisfaction of the end user and profitability. However, there is a growing concern that these automated decisions can lead to user discrimination, even in the absence of intent. In this paper, we introduce fairness constraints, a mechanism to ensure fairness in a wide variety of classifiers in a principled manner. Fairness prevents a classifier from outputting predictions correlated with certain sensitive attributes in the data. We then instantiate fairness constraints on three well-known classifiers -- logistic regression, hinge loss and support vector machines (SVM) -- and evaluate their performance in a real-world dataset with meaningful sensitive human attributes. Experiments show that fairness constraints allow for an optimal trade-off between accuracy and fairness.

Submitted to arXiv on 19 Jul. 2015

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.