Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

Authors: Yarin Gal, Zoubin Ghahramani

10 pages, 7 figures

Abstract: Deep learning tools have recently gained much attention in applied machine learning. However such tools for regression and classification do not allow us to capture model uncertainty. Bayesian models offer us the ability to reason about model uncertainty, but usually come with a prohibitive computational cost. We show that dropout in multilayer perceptron models (MLPs) can be interpreted as a Bayesian approximation. Results are obtained for modelling uncertainty for dropout MLP models - extracting information that has been thrown away so far, from existing models. This mitigates the problem of representing uncertainty in deep learning without sacrificing computational performance or test accuracy. We perform an exploratory study of the dropout uncertainty properties. Various network architectures and non-linearities are assessed on tasks of extrapolation, interpolation, and classification. We show that model uncertainty is important for classification tasks using MNIST as an example, and use the model's uncertainty in a Bayesian pipeline, with deep reinforcement learning as a concrete example.

Submitted to arXiv on 06 Jun. 2015

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.