Multiscale statistical testing for connectome-wide association studies in fMRI

Authors: P. Bellec, Y. Benhajali, F. Carbonell, C. Dansereau, G. Albouy, M. Pelland, C. Craddock, O. Collignon, J. Doyon, E. Stip, P. Orban

arXiv: 1409.2080v2 - DOI (q-bio.QM)
54 pages, 12 main figures, 1 main table, 10 supplementary figures, 1 supplementary table
License: CC BY 3.0

Abstract: Alterations in brain connectivity have been associated with a variety of clinical disorders using functional magnetic resonance imaging (fMRI). We investigated empirically how the number of brain parcels (or scale) impacted the results of a mass univariate general linear model (GLM) on connectomes. The brain parcels used as nodes in the connectome analysis were functionnally defined by a group cluster analysis. We first validated that a classic Benjamini-Hochberg procedure with parametric GLM tests did control appropriately the false-discovery rate (FDR) at a given scale. We then observed on realistic simulations that there was no substantial inflation of the FDR across scales, as long as the FDR was controlled independently within each scale, and the presence of true associations could be established using an omnibus permutation test combining all scales. Second, we observed both on simulations and on three real resting-state fMRI datasets (schizophrenia, congenital blindness, motor practice) that the rate of discovery varied markedly as a function of scales, and was relatively higher for low scales, below 25. Despite the differences in discovery rate, the statistical maps derived at different scales were generally very consistent in the three real datasets. Some seeds still showed effects better observed around 50, illustrating the potential benefits of multiscale analysis. On real data, the statistical maps agreed well with the existing literature. Overall, our results support that the multiscale GLM connectome analysis with FDR is statistically valid and can capture biologically meaningful effects in a variety of experimental conditions.

Submitted to arXiv on 07 Sep. 2014

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.