3D model of hydrogen atmospheric escape from HD209458b and HD189733b: radiative blow-out and stellar wind interactions
Authors: Vincent Bourrier, Alain Lecavelier des Etangs
Abstract: Transit observations in Ly-alpha of HD209458b and HD189733b revealed signatures of neutral hydrogen escaping the planets. We present a 3D particle model of the dynamics of the escaping atoms, and calculate theoretical Ly-alpha absorption line profiles, which can be directly compared with the absorption observed in the blue wing of the line. For HD209458b the observed velocities of the escaping atoms up to -130km/s are naturally explained by radiation-pressure acceleration. The observations are well-fitted with an ionizing flux of about 3-4 times solar and a hydrogen escape rate in the range 10^9-10^11g/s, in agreement with theoretical predictions. For HD189733b absorption by neutral hydrogen was observed in 2011 in the velocity range -230 to -140km/s. These velocities are higher than for HD209458b and require an additional acceleration mechanism for the escaping hydrogen atoms, which could be interactions with stellar wind protons. We constrain the stellar wind (temperature ~3x10^4K, velocity 200+-20km/s and density in the range 10^3-10^7/cm3) as well as the escape rate (4x10^8-10^11g/s) and ionizing flux (6-23 times solar). We also reveal the existence of an 'escape-limited' saturation regime in which most of the escaping gas interacts with the stellar protons. In this regime, which occurs at proton densities above ~3x10^5/cm3, the amplitude of the absorption signature is limited by the escape rate and does not depend on the wind density. The non-detection of escaping hydrogen in earlier observations in 2010 can be explained by the suppression of the stellar wind at that time, or an escape rate of about an order of magnitude lower than in 2011. For both planets, best-fit simulations show that the escaping atmosphere has the shape of a cometary tail.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.