Continuous Dynamic Photostimulation - inducing in-vivo-like fluctuating conductances with Channelrhodopsins

Authors: Andreas Neef, Ahmed El Hady, Jatin Nagpal, Kai Bröking, Ghazaleh Afshar, Oliver M Schlüter, Theo Geisel, Ernst Bamberg, Ragnar Fleischmann, Walter Stühmer, Fred Wolf

arXiv: 1305.7125v2 - DOI (q-bio.NC)

Abstract: Central neurons operate in a regime of constantly fluctuating conductances, induced by thousands of presynaptic cells. Channelrhodopsins have been almost exclusively used to imprint a fixed spike pattern by sequences of brief depolarizations. Here we introduce continuous dynamic photostimulation (CoDyPs), a novel approach to mimic in-vivo like input fluctuations noninvasively in cells transfected with the weakly inactivating channelrhodopsin variant ChIEF. Even during long-term experiments, cultured neurons subjected to CoDyPs generate seemingly random, but reproducible spike patterns. In voltage clamped cells CoDyPs induced highly reproducible current waveforms that could be precisely predicted from the light-conductance transfer function of ChIEF. CoDyPs can replace the conventional, flash-evoked imprinting of spike patterns in in-vivo and in-vitro studies, preserving natural activity. When combined with non-invasive spike-detection, CoDyPs allows the acquisition of order of magnitudes larger data sets than previously possible, for studies of dynamical response properties of many individual neurons.

Submitted to arXiv on 30 May. 2013

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.