SVD Based Image Processing Applications: State of The Art, Contributions and Research Challenges

Authors: Rowayda A. Sadek

(IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 3, No. 7, 2012 26-34

Abstract: Singular Value Decomposition (SVD) has recently emerged as a new paradigm for processing different types of images. SVD is an attractive algebraic transform for image processing applications. The paper proposes an experimental survey for the SVD as an efficient transform in image processing applications. Despite the well-known fact that SVD offers attractive properties in imaging, the exploring of using its properties in various image applications is currently at its infancy. Since the SVD has many attractive properties have not been utilized, this paper contributes in using these generous properties in newly image applications and gives a highly recommendation for more research challenges. In this paper, the SVD properties for images are experimentally presented to be utilized in developing new SVD-based image processing applications. The paper offers survey on the developed SVD based image applications. The paper also proposes some new contributions that were originated from SVD properties analysis in different image processing. The aim of this paper is to provide a better understanding of the SVD in image processing and identify important various applications and open research directions in this increasingly important area; SVD based image processing in the future research.

Submitted to arXiv on 29 Nov. 2012

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.