Artificial Neural Network Based Optical Character Recognition
Authors: Vivek Shrivastava, Navdeep Sharma
Abstract: Optical Character Recognition deals in recognition and classification of characters from an image. For the recognition to be accurate, certain topological and geometrical properties are calculated, based on which a character is classified and recognized. Also, the Human psychology perceives characters by its overall shape and features such as strokes, curves, protrusions, enclosures etc. These properties, also called Features are extracted from the image by means of spatial pixel-based calculation. A collection of such features, called Vectors, help in defining a character uniquely, by means of an Artificial Neural Network that uses these Feature Vectors.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.