Mass and environment as drivers of galaxy evolution in SDSS and zCOSMOS and the origin of the Schechter function

Authors: Y. Peng, S. J. Lilly, K. Kovac, M. Bolzonella, L. Pozzetti, A. Renzini, G. Zamorani, O. Ilbert, C. Knobel, A. Iovino, C. Maier, O. Cucciati, L. Tasca, C. M. Carollo, J. Silverman, P. Kampczyk, L. de Ravel, D. Sanders, T. Contini, V. Mainieri, M. Scodeggio, J. -P. Kneib, O. Le Fevre, S. Bardelli, A. Bongiorno, K. Caputi, G. Coppa, S. de la Torre, P. Franzetti, B. Garilli, F. Lamareille, J. -F. Le Borgne, V. Le Brun, M. Mignoli, E. Perez Montero, R. Pello, E. Ricciardelli, M. Tanaka, L. Tresse, D. Vergani, N. Welikala, E. Zucca, P. Oesch, U. Abbas, L. Barnes, R. Bordoloi, D. Bottini, A. Cappi, P. Cassata, A. Cimatti, M. Fumana, G. Hasinger, A. M. Koekemoer, A. Leauthaud, D. Maccagni, C. Marinoni, H. J. McCracken, P. Memeo, B. Meneux, P. Nair, C. Porciani, V. Presotto, R. Scaramella

arXiv: 1003.4747v1 - DOI (astro-ph.CO)
66 pages, 19 figures, 1 movie submitted to ApJ. The movie is available at http://www.exp-astro.phys.ethz.ch/zCOSMOS/MF_simulation_d1_d4.mov . A version of the paper with higher resolution images is available at http://www.exp-astro.phys.ethz.ch/zCOSMOS/SDSS_zCOSMOS_ApJ_submitted.pdf

Abstract: We explore the inter-relationships between mass, star-formation rate and environment in the SDSS, zCOSMOS and other surveys. The differential effects of mass and environment are completely separable to z ~ 1, indicating that two distinct processes are operating, "mass-quenching" and "environment-quenching". Environment-quenching, at fixed over-density, evidently does not change with epoch to z ~ 1, suggesting that it occurs as large-scale structure develops in the Universe. The observed constancy of the mass-function shape for star-forming galaxies, demands that the mass-quenching of galaxies around and above M*, must be proportional to their star-formation rates at all z < 2. We postulate that this simple mass-quenching law also holds over a much broader range of stellar mass and epoch. These two simple quenching processes, plus some additional quenching due to merging, then naturally produce (a) a quasi-static Schechter mass function for star-forming galaxies with a value of M* that is set by the proportionality between the star-formation and mass-quenching rates, (b) a double Schechter function for passive galaxies with two components: the dominant one is produced by mass-quenching and has exactly the same M* as the star-forming galaxies but an alpha shallower by +1, while the other is produced by environment effects and has the same M* and alpha as the star-forming galaxies, and is larger in high density environments. Subsequent merging of quenched galaxies modifies these predictions somewhat in the denser environments, slightly increasing M* and making alpha more negative. All of these detailed quantitative relationships between the Schechter parameters are indeed seen in the SDSS, lending strong support to our simple empirically-based model. The model naturally produces for passive galaxies the "anti-hierarchical" run of mean ages and alpha-element abundances with mass.

Submitted to arXiv on 24 Mar. 2010

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.