Entanglement Entropy, decoherence, and quantum phase transition of a dissipative two-level system
Authors: Karyn Le Hur
Abstract: The concept of entanglement entropy appears in multiple contexts, from black hole physics to quantum information theory, where it measures the entanglement of quantum states. We investigate the entanglement entropy in a simple model, the spin-boson model, which describes a qubit (two-level system) interacting with a collection of harmonic oscillators that models the environment responsible for decoherence and dissipation. The entanglement entropy allows to make a precise unification between entanglement of the spin with its environment, decoherence, and quantum phase transitions. We derive exact analytical results which are confirmed by Numerical Renormalization Group arguments both for an ohmic and a subohmic bosonic bath. Those demonstrate that the entanglement entropy obeys universal scalings. We make comparisons with entanglement properties in the quantum Ising model and in the Dicke model. We also emphasize the possibility of measuring this entanglement entropy using charge qubits subject to electromagnetic noise; such measurements would provide an empirical proof of the existence of entanglement entropy.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.